

Aproveitamento de finos de carvão vegetal na composição de substrato para produção de mudas

Santos, M.R.¹; Kappler, G.¹; Moraes, C. A. M.¹; Rocha, I. G.²; Schlindwein, G.³; Modolo, R.C.E.¹ Universidade do Vale do Rio dos Sinos; ²Universidade Federal do Rio Grande do Sul; ³Departamento de Diagnóstico e Pesquisa Agropecuária/SEAPDR. Autor responsável: marinaremiao@gmail.com

INTRODUÇÃO

A produção de substrato pode ser uma alternativa para diversos tipos de resíduos, o que permite uma destinação mais sustentável para o mesmo. Assim, o objetivo deste estudo é avaliar o desempenho de substrato com adição de resíduos da indústria de carvoejamento, nomeadamente os finos de carvão vegetal, na produção de mudas de *Acacia mearsnii*.

METODOLOGIA

Material: Finos de carvão (FC) moídos e substrato Carolina Soil[®]. **Tratamentos:** Substrato/Carvão misturados em diferentes proporções (100:0%, 95:5%, 75:5%, 50:50% e 25:75% (v:v)).

Avaliações:

Substrato: pH, condutividade elétrica (CE), teor total de sais solúveis (TTSS), densidade úmida (DU), porosidade total (PT), espaço de aeração (EA), água facilmente disponível (AFD) e água tamponante (AT) (Tabela 1).

Fitometria: Altura (cm), comprimento de raiz (cm) e massa seca (MSP) e fresca de planta (MFP), após 90 dias de cultivo (Tabela 2).

RESULTADOS E DISCUSSÃO

Tabela 1. Caracterização química e física dos substratos com diferentes proporções de finos de carvão vegetal.

Tratamento	pH (H ₂ 0)	CE (dS/cm ⁻¹)	TTSS (Kg m ⁻³) D	U (g L ⁻¹)	PT	EA	AFD	AT	
					m³ m-³				
$S_{100}C_0$	6,53 c	0,32 a	0,91 a	550 a	106 a	36 a	27 a	3 ns	
$S_{95}C_5$	7,2 bc	0,21 b	0,62 bc	505 b	90 b	21 b	28 a	3	
$S_{75}C_{25}$	7,66 ab	0,21 b	0,67 b	504 b	87 b	21 b	24 a	3	
$S_{50}C_{50}$	7,68 ab	0,22 ab	0,64 b	412 c	76 c	19 bc	14 b	3	
$S_{25}C_{75}$	8,15 a	0,23 ab	0,58 c	401 c	71 c	14 c	10 b	4	

Médias seguidas de mesma letra minuscula na coluna, não diferem entre si pelo teste. Lukey 5%.

Tabela 2. Crescimento de acácia cultivada em substratos a base de carvão vegetal.

Tratamento	Altura (cm)	Comprimento de raiz (cm)	MFP (g)	MSP (g)
$S_{100}C_0$	4,90 b	3,71 b	0,02 c	0,007 b
$S_{95}C_5$	8,10 a	9,20 a	0,09 a	0,023 a
$S_{75}C_{25}$	5,20 b	6,66 a	0,06 ab	0,014 b
$S_{50}C_{50}$	7,00 ab	8,33 a	0,05 b	0,014 b
$S_{25}C_{75}$	4,90 b	6,50 a	0,03 bc	0,010 b
CV%	43,20 *	30,65 **	1,98 ***	0,46 ***

Médias seguidas de mesma letra minúscula na coluna, não diferem entre si pelo teste Duncan 5%.

CONCLUSÃO

O substrato com FC altera as características físicas e químicas na mistura com substrato, especialmente aumentando o pH e reduzindo espaço poroso e disponibilidade de água. A adição de até 5% de carvão favorece o desenvolvimento de mudas de Acácia negra.

